

Key to OEIS Foundation Poster

Meanders: A005316

Necklaces:
A000031(5)=8

A000105(5)=12: polyominoes with 5 cells

A000001: number of groups of order n
A000002: Kolakowski's sequence: $a(n)=$ length of nth run
A000005: number of divisors of n
A000010: Euler totient function
A000031: number of 2-colored necklaces with n beads
A000041: number of partitions of n
A000045: Fibonacci numbers: $F(n)=F(n-1)+F(n-2)$
A000055: number of trees on n nodes
A000069: odious numbers (odd no. of 1s in binary)
A000105: number of polyominoes with n cells
A000108: the Catalan numbers
A000110: the Bell numbers
A000326: pentagonal numbers $n(3 n-1) / 2$
A000670: preferential arrangements of n things
A001006: the Motzkin numbers
A003035: orchard problem: plant n trees in rows of 3
A003173: $Q(\sqrt{ }-n)$ has unique factorization
A005132: Recaman's sequence
A005316: No. of ways a river can cross a road n times
A006066: Max. no. of nonoverlapping triangles from n lines
A064413: EKG sequence
A087019: dismal squares
A090822: Gijswijt's sequence
A110312: Min. no. of pieces in dissection of n-gon to square?
A139250: toothpick sequence

First 10000 terms of Recaman's sequence A005132

The pig illustrates the Curling Number Conjecture (see A090822, A116909)

A110312 (3) $=4$?
Conjectured minimal dissection of triangle to square

Kobon triangles:
A006066(10) ≥ 25

